

Unit 1:

Short Answers: (2 Marks Each)

Q. 1 Relation between Different operators1) $\Delta = E - 1$ 2) $\nabla = (1 - E^{-1})$ **CO-1 BL-3****Q. 2** If $f(x) = x^3 - 3x^2 + 5x + 7$, find $\Delta^2 f(x)$ when $x=1$. **CO-1 BL-2****Q. 3** Write stirling, differential forward and backward formula . **CO-1 BL-2****Q. 4** Prove that $\Delta^6(ax - 1)(bx^2 - 1)(cx^3 - 1); h = 1$. **CO-1 BL-3****Q. 5** Find the missing term of the following data **CO-1 BL-3** Use Lagrange's Formula

X	0	1	2	3	4
Y	1	8	-	64	125

Descriptive Answers: (5 to 20 Marks)

Q. 1 A body moving with velocity v at any time t satisfies the data **CO-2****BL-2**

T	0	1	3	4
V	21	15	12	10

Obtain the distance travelled in 4 seconds and acceleration at the end of 4 seconds

Q. 2 Use stirling formula to find y_{28} , given $y_{20} = 49225$, $y_{25} = 48316$, $y_{30} = 47236$, $y_{35} = 45926$, $y_{40} = 44306$. **CO-1 BL-2****Q. 3** Use Lagrange Formula; Interpolate the value of y at $x = 10$.

X	5	6	9	11	
Y	12	13	14	16	

CO-1 BL-2**Q. 4** Use newton divided difference formula to find the values of $f(2)$, $f(8)$ and $f(15)$ from the following table .

X	4	5	7	10	11	13
F(x)	48	100	294	900	1210	2028

CO-1**BL-2****Q. 5** Calculate (upto 3 places of decimal) $\int_2^{10} dx$ by dividing the range into eight parts.(INTEGRATION)**CO-1 BL-2****Q. 6** From the given data given below, find the number of students whose weight is between 60 and 70.: **CO-1 BL-2**

Weight	No. of Candidates
0-40	250
40-60	120
60-80	100
80-100	70
100-120	50

Q.7 Given the following data

x	10	20	30	40	50	690	70	80
y	0.9848	0.9397	0.8660	0.7660	0.6428	0.500	0.3420	0.1737

Evaluate (i) $y(25)$, (ii) $y(32)$ (iii) $y(73)$ CO-1 BL-2

Unit 2(Q.1 to 4 Only for ECE & ME)

Short Answers: (2 Marks Each)

Q. 1 Given the $y(x)$ is the solution to $\frac{dy}{dx} = y^3 + 2$, $y(0) = 3$, find the value of $y(0.2)$ from a second order Taylor polynomial around $x = 0$. **CO-2 BL-2**

BL-2

Q. 2 Solve $\frac{dy}{dx} = xy$, with the help of Euler's method, given that $y(0) = 1$, and find y when $x=0.2$; the step size being **CO-2 BL-2**

Q. 3 Write Runge-Kutta 4th order formula. **CO-2 BL-2**

Q. 4 Write Milne's and Adam's predictor-corrector method formula. **CO-2 BL-2**

Q. 5 Using Newton-Rapson's method, find the real root of $x^4 - 12x + 7 = 0$, which is near to $x=2$, correct to three places of decimal. **CO-2 BL-2**

Q. 6 Write Regula-Falsi method formula. **CO-2 BL-2**

Descriptive Answers: (5 to 20 Marks)

**ARYA COLLEGE OF ENGINEERING
(ACE)**

(B.Tech 2026) YEAR. IIIRD Semester 2025-2026

**3EE2-01, 3ME2-01 and
3CE2-01_AEM-I**

Q. 1 Use Taylor's series method to solve the equation $\frac{dy}{dx} = x + y, x = 1, y = 0$ up to $x = 1.2$ with $h = 0.1$.

BO-2

Q. 2 Using Euler's modified method; obtain a solution of $\frac{dy}{dx} = x + |\sqrt{y}|, y(0) = 1$ for the range $0 \leq x \leq 0.4$ in steps of 0.2. **CO-2**

BL-2

Q. 3 Given that $\frac{dy}{dx} = x^2(1 + y)$ and $y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979$. Evaluate $y(1.4)$

Q. 4 Using Milne's method, **Q. 2** Runge - Kutta method to find an approximate value of y for $x=0.2$, given that $y=1$ when **BL-3** and taking $h=0.1$. **CO-2**

BL-2

Q. 5 Using Halving method or Bisection method, find the approximate root of the equation $x^4 + 2x^3 - x - 1 = 0$ lying in the interval $[0, 1]$. **CO-2 BL-3**

Q. 6 Perform four iterations of the Newton-Raphson method to obtain approximate value of $(17)^{1/2}$ starting with the initial approximation $x_0 = 2$. **CO-2 BL-2**

Unit 3:

Short Answers: (2 Marks Each)

Q. 1 If $L\{f(t)\} = F(s)$, then prove that $L\{tf(t)\} = -\frac{d}{ds}F(s)$. And hence find the Laplace transform of $e^t t^2 \sin 4t$.
CO-3

BL-2 Obtain the Laplace transform of $\frac{\cosh at}{\sqrt{a^2 + t^2}}$. **CO-3**

BL-3 Q. 3 Find the Laplace transform of $e^{2t} + 4t^3 - 5 \sin 3t + 7 \cos 2t$. **CO-3**

BL-2 Q. 4 Find the inverse Laplace transform of $\log\left(\frac{s+3}{s+2}\right)$. **CO-3**

BL-3 Q. 5 Find the Laplace transform of Dirac delta function. **CO-3**

BL-2 Q. 6 Compute L.T. of the following: $f(t) = \begin{cases} \sin(t - \frac{\pi}{3}) & t > \pi/3 \\ 0, & t < \pi/3 \end{cases}$ **CO-3**

BL-4 Q. 7 Define the Unit step function and find Laplace transform of unit step function (Heaviside Unit step function)
CO-3 BL-2

Descriptive Answers: (5 to 20 Marks)

Q. 1 Find the Laplace transform of \sin_t . Hence show that $L(\sin_t) = \frac{1}{s^2 + 1}$. **CO-3**

BL-4 Q. 2 Prove that $L(\sin t) = \tan^{-1}\left(\frac{1}{s}\right)$. Hence find Laplace transform of $\frac{\sin at}{t}$. Does $\frac{\cos at}{t}$ exists? Also prove that $\int_0^\infty \frac{\sin 2t}{t} dt = \frac{\pi}{2}$. **CO-3**

Q. 3 **BL-2** Show that. **CO-3**

BL-3 Q. 4 Find $L(s^4 + s^2)$. **CO-3**

Q. 5 Q. 5 Apply the convolution theorem to evaluate $L^{-1}\left(\frac{s}{(s^2 + a^2)(s^2 + b^2)}\right)$. **CO-3**

Q. 6 State and proof of convolution theorem for Laplace transform. **BL-2**

Q. 7 Use Laplace transform technique to solve the following equations (Only for ECE &

ME) $(D^2 + 9)y = \cos 2t, y(0) = 1, y(\frac{\pi}{2}) = -1$. **CO-3 BL-2**

Unit 4:

Short Answers: (2 Marks Each)

ARYA COLLEGE OF ENGINEERING
(ACE)

(B.Tech 3RD YEAR, IIIRD Semester 2025-2026)

**3EE2-01, 3ME2-01 and
3CE2-01_AEM-I**

$$\begin{cases} 1 - \frac{|x|}{x^2}, & |x| < 1 \\ 0, & |x| \geq 1 \end{cases}$$

Q. 3 Find the Fourier sine and cosine transform of the functions: $f(x) = x$ **CO-4 BL-2**

Q. 4 Find the relation between Fourier and Laplace transforms. **CO-4 BL-2**

Q. 5 Find $f(x)$ if its Fourier Sine transform is e^{-as} . **CO-4 BL-3**

Q. 6 If $F(s)$ is the Fourier transform of $f(x)$, then the Fourier transform of $f(x - a)$ is $e^{isa}F(s)$. **CO-4 BL-3**

Q. 7 State the Fourier integral theorem. **CO-4 BL-2**

Descriptive Answers: (5 to 20 Marks)

Q. 1 Find the Fourier transform of **CO-4 BL-4**

$$\int_{-\infty}^{\infty} f(x) e^{-sx} dx = \begin{cases} \frac{1}{s} - \frac{1}{s^2}, & |x| < a \\ 0, & |x| \geq a \end{cases} \text{ Hence prove that: } \int_{-\infty}^{\infty} e^{-sx} \cos x dx = \frac{1}{s^2 + 1}$$

Q. 2 Find the Fourier sine transform of the following function: **CO-4 BL-3**

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$$

Q. 3 Find the Fourier cosine transform of e^{-x^2} . **CO-4 BL-4**

Q. 4 Solve the following integral equation: **CO-4 BL-4**

$$\int_0^{\infty} f(x) \cos sx dx = \begin{cases} 1 - s, & \text{when } 0 \leq s \leq 1 \\ 0, & \text{when } s > 1 \end{cases} \text{ Hence deduce that } \int_0^{\infty} \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}$$

Q. 5 Express the function $f(x) = \frac{2}{\pi} \sin x$, $0 < x < \pi$ as a Fourier sine integral and hence evaluate $\int_0^{\infty} \frac{\sin^2 x}{x^2} dx$

CO-4 BL-4

Q. 6 Find the $f(x)$ if its Fourier sine transform is $\frac{1}{s^2 + 1}$. **CO-4 BL-3**

Q. 7 Solve the boundary value problem $\frac{\partial \theta}{\partial t} = k \frac{\partial^2 \theta}{\partial x^2}$, using Fourier transforms. **CO-4 BL-4**

Given that $\theta(0, t) = \theta$, $t > 0$; $\theta(x, 0) = 0$, $x > 0$ and $\frac{\partial \theta}{\partial x} \rightarrow 0$ and as $x \rightarrow \infty$, $\theta \rightarrow 0$. (Only for ECE & ME)

Unit 5:

Short Answers: (2 Marks Each)

Q. 1 Find the Z-transform of the following function **CO-5**

BL-2

i) $\sum_{n=0}^{\infty} n^2$ and hence $\lim_{z \rightarrow \infty} z \bar{u}(z)$

ii) $\bar{u}(z) = \{8, 6, 3, -1, 0, 1, 4, 5\}, -5 \leq n \leq 1$

Q. 2 If $\bar{Z}(u_n) = \bar{u}(z)$, $n \geq 0$ then show that $\lim_{z \rightarrow \infty} \bar{u}(z) = u_0$. **CO-5**

Q. 3 If $Z(u_n) = \bar{u}(z)$, then show that $Z(u_{n-k}) = z^k \bar{u}(z)$ **CO-5**

Q. 4 Prove that $Z(n^p) = -z \frac{d}{dz} Z(n^{p-1})$; $n \geq 0$ **CO-5**

Q. 5 If $Z(u_n) = \bar{u}(z)$, $n \geq 0$, then $\lim_{z \rightarrow \infty} \bar{u}(z) = u_0$. **CO-5**

Q. 6 Find the inverse z-transform of $\log \left(\frac{z}{z-1} \right)$. Also, find inverse Z-transform of $\frac{z}{(z-1)(z-2)}$; $|z| > 2$ **CO-5**

Q. 7 Find the inverse Z-transform of discrete unit step function- $U(k) = \begin{cases} 0, & k < 0 \\ 1, & k \geq 0 \end{cases}$ **CO-5** **BL-2**

BL-2

Descriptive Answers: (5 to 20 Marks)

Q. 1 Find the Z-transform of n^2 ; $n \geq 0$. Hence find the $Z[(n-1)^2]$. **CO-5** **BL-2**

Q. 2 Find the Z-transform of $m+n C_m$, $n \geq 0$ and also find the Z-transform of $a^n \sinh n\theta$, $n \geq 0$ **CO-5**

Q. 3 If $Z(u_n) = \bar{u}(z)$, $n \geq 0$, then $\lim_n u_n = \lim_{z \rightarrow 1} (z-1) \bar{u}(z) = u_0$. **CO-5**

Q. 4 State and prove the convolution theorem for Z-transform ($n \geq 0$). **CO-5**

Q. 5 Find the $\frac{d}{dz} Z(z)$ by residue method. **CO-5**

Q. 6 Using convolution theorem, find $\frac{d^2}{dz^2} Z(z)$; $n \geq 0$. **CO-5**

Q. 7 $u_{n+2} - 6u_{n+1} + 8u_n = 2^n + 6^n$. **CO-5** **BL-2**

Solve

BL-2

Unit 6: Only for 3EE2-01

Short Answers: (2 Marks Each)

Q. 1 Prove that the function $e^x(\cos y + i \sin y)$ is analytic and find its derivative. **CO-2**

BL-2

Q. 2 Define the analyticity of the function $\bar{u}(z) = \sin z$ and hence derive that $\frac{d}{dz} (\sin z) = \cos z$. **CO-2**

BL-2

Q. 4 Consider the transformation $w = 2z$, and determine the region R' in w-plane into which the triangular region R

enclosed by the lines $x = 0$, $y = 0$ and $x + y = 1$ in z-plane is mapped under this transformation. **CO-2** **BL-2**

Q. 5 For the conformal transformation at $w = z^2$, show that the coefficient of magnification at $z = 1 + i$ is $2\sqrt{2}$.

Q. 6 Show that the transformation $w = \frac{2z+3}{z-1}$ maps the circle $x^2 + y^2 - 4x = 0$ into straight line $4u + 3 = 0$.

Q. 7 For the conformal transformation $w = z^2$, show that the angle of rotation at $z = 2 + i$ is $\tan^{-1}(0.5)$. **CO-2**

BL-2

**ARYA COLLEGE OF ENGINEERING
(ACE)**

(B.Tech 2026) YEAR. IIIRD Semester 2025-2026

**3EE2-01, 3ME2-01 and
3CE2-01_AEM-I**

Descriptive Answers: (5 to 20 Marks)

Q. 1 If $f(z) = u + iv$ is an analytic function of $z = x + iy$, and $u - v = e^x(\cos y - \sin y)$, find $f(z)$ in terms of z . **CO-2 BL-2**

Q. 2 Determine the analytic function, whose real part is $x^3 - 3xy^2 + 3x^2 - 3y^2 + 2x + 1$. Also prove that the given function satisfies Laplace equation. **CO-2 BL-2**

Q. 3 Define the analytic function $f(z) = \frac{xy}{x^2+y^2} (x+iy)$ in the regions including the origin. **CO-2**

Q. 4 Determine the region in the w -plane into which the rectangular region bounded by the lines $x = 0, y = 0, x = 1, y = 2$ in the z -plane is mapped under the transformation. $w = (1+i)z + (2-i)$. Discuss also magnification, rotation and translation. **CO-2 BL-2**

Q. 5 Find the bilinear transform which maps the points $z = 1, i, -1$ respectively on to the points $w = i, 0, -i$. **CO-2 BL-2**

Q. 6 State and prove of Cauchy-Riemann equation. **CO-2 BL-2**

Q. 7 If $f(z)$ is a regular function of z , prove that $\left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} \right) |f(z)|^2 = 4|f'(z)|^2$ **CO-2 BL-2**